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Unsteady heat transfer in capillary zone electrophoresis 

I. A mathematical model 
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ABSTRACT 

A solution to the problem of unsteady heat transfer in capillary zone electrophoresis is presented. A general set of partial differential 
equations for conjugated heat transfer in a capillary is formulated. An approximate analytical solution is obtained for a limiting case of 
a “thin-walled” capillary and for different regimes of a power supply (voltage-stabilized, power-stabilized or current-stabilized). An 
exact analytical solution is derived for transient times in the voltage-stabilized regime. It is shown that temperature evolution in a 
capillary can be described by the only eigenfunction with a corresponding exponential factor. 

INTRODUCTION 

Steady-state heat transfer in capillary zone elec- 
trophoresis (CZE) has been the subject of a number 
of publications [l-5]. However, unsteady phenom- 
ena such as transition of temperature and electric 
current to a steady-state were not considered previ- 
ously. Experimental observations have shown that 
an increase in the power generation within a capil- 
lary and/or an increase in capillary radius lead to an 
increase in the time necessary to achieve stationary 
current values. Under certain conditions, current 
and temperature can increase substantially [4,5]. In 
order to study theoretically the transient heat trans- 
fer in a capillary, we formulated a set of partial 
non-linear integro-differential equations for un- 
steady heat transfer in a capillary cross-section 
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taking into account the temperature dependence of 
electric conductivity [6]. 

In this paper an equation and its solution are 
derived for the average temperature in the capillary 
lumen. The exact solution of the equations for the 
case of the voltage-stabilized regime is obtained by 
using an expansion in eigenfunction series. 

GOVERNING EQUATIONS 

We consider a cross-section of a cylindrical struc- 
ture consisting of an inner cylindrical lumen that 
contains an electrolyte solution (buffer), its wall, 
having different thermal properties, and the outer 
wall coating, with properties different from those of 
the electrolyte solution and the wall. 

The temperature in the domain is governed by a 
set of equations [6] which can be represented in 
dimensionless form as follows: 

O<r<l (1) 

l<r<rw (2) 
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as ia as -= 
at rcpr f - . - 

r dr ( > 
r*-- 

ar 
rw < r -c rp (3) 

9 = finite at r = 0 (4a) 

s-=9+ 9-=/j 
’ dr 

Eat,,* 
wL ar 

$- _ 9+ aa- _ B - as+ 
’ ar PW f -7g at r = rw 

(4b) 

(4c) 

--BpL.g = Bi(9 - SC) at r = rp (4d) 

$(r, t = 0) = & (5) 

where r is the dimensionless radius measured in units 
of inner capillary diameter, 9 is the dimensionless 
temperature, F the dimensionless heat source, t the 
dimensionless time, Bi the Biot number, lcwL and lcpL 
are the relative thermal diffusivities (temperature 
conductivities) of the wall and coat measured in 
units of the electrolyte thermal diffusivity and 
BWL = XWIXL, BPW = XPIXW, BPL = XPIXL are the 

relative thermal conductivities (xL, xw and xp being 
the thermal conductivities of the electrolyte, wall 
and coating, respectively). 

The dimensionless heat source term (volumetric 
power generation) is represented as follows: 

F = 1 + k29 (W 

for the voltage-stabilized mode of operation, 

F = (1 + k29)/(l + k2@2 (6b) 

for the current-stabilized mode and 

F = (1 + k29)/(l + k2@ (6~) 

for the power-stabilized mode, where 9 is the 
average dimensionless temperature, given by 

s = 2 i Srdr (6d) 
0 

and k2 is the autothermal parameter defined in ref. 6. 
The average temperature of the buffer $is of great 

importance for CZE, as it influences the character- 
istics of an analyte and the buffer electric conduc- 
tivity. The dimensionless electric current i is related 
to a as follows: 

i = I/IO = 1 + k2s (69 

where I is the electric current at time t and I0 is its 
initial value. 

APPROXIMATE SOLUTION FOR AVERAGE TEMPER- 

ATURE 

In this part we shall derive an approximate 
equation for the average temperature of the buffer 
and its solution in an analytical form. 

We are mainly interested in the case of poor 
cooling conditions, as we assume the Biot number to 
be small in comparison with unity: 

Bi << 1 

This assumption allows us to assume that the 
temperature profile within the capillary is flat and 
close to a constant. In this case the possibility of 
finding an average temperature would be enough to 
describe the heat-conduction process. For deriving 
an equation for the average buffer temperature 
defined by eqn. 6d, we multiply eqn. 1 by 2r and 
integrate it from 0 to 1. The result is 

-_=2 a9 a$ 
at ’ drl,=l 

+F 

F = 2 i Frdr 

(7) 

0 

By substituting eqns. 6a-c in eqn. 8, one obtains 

F = 1 + k2a @a) 

for the voltage-stabilized mode of operation and 

F = l/(1 + k2$) (8b) 

for the current-stabilized mode. For the power- 
stabilized mode, the integration gives 

F= 1 (gc) 

For deriving the approximate equation, we as- 
sume the capillary wall and coating to be thin in the 
sense that the characteristic times of temperature 
conduction through the wall and coating are much 
shorter than the characteristic time of temperature 
conduction in the lumen. This means validity of the 
following relationships: 

pw E rw(rw - l)/IcwL < 1; 

(9) 

where pw and pp are dimensionless parameters 
representing ratios of the characteristic times for 
temperature conduction in the wall and coating to 
the characteristic time of the lumen temperature 
conduction. 
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Assumption 9 allows us to neglect temporal 
derivatives on the left-hand sides of eqns. 2 and 3 
and to consider them as quasi-steady. By seeking 
their solutions in the form 

9 = L?ln(r) + C l<r<rw 

9 = Din(r) + E rw < r < rp 
(10) 

where B, C, D and E are constants, and by applying 
boundary conditions 4&l, one obtains 

a9 
W.=1 

= BioA($ - LA-) 

&A = PWL {Mrw) + 

(11) 

$ 
[ 
Wdrw) + 

PW 
+&I)-1 (12) 
P 

By substituting eqn. 11 into eqn. 7 we can derive 
an approximate equation for the average tempera- 
ture R 

d?? -= 
dt 

-2BioA(g - ,!A-) + F (13) 

Note that the coefficient Bion given by eqn. 12 is 
exactly the overall Biot number [4]. 

The initial condition for eqn. 13 follows directly 
from eqn. 5: 

9-(t = 0) = 9c (14) 

If the autothermal parameter kZ is small (or, more 
strictly, k2L? +z l), eqn. 8b, representing the heat 
source term for the current-stabilized mode, can be 
linearized as follows: 

F = 1 - k2$ (15) 

and the governing equation for the average tempera- 
ture of the buffer for all the modes of operation can 
be written in the following general form: 

aif -= 
at 

-2BioA(g - SC) + 1 + fk2g (16) 

where the factor f is 

1 

1 for the voltage-stabilized mode 
f= - 1 for the current-stabilized mode 

0 for the power-stabilized mode 

The solution of eqn. 16 with initial condition 14 is 
given by 

S = 9, + [SC - &] exp( - t/z) (17) 

s 
s 

= 2BioA& + 1 

2BioA - fk2 
(174 

z = (2BioA - fk’)-l (17b) 

where & is the steady-state (i.e., independent of 
time) part of the solution and z is the characteristic 
time of the transient process. 

The linearization 15 of the heat source 8b is used 
only to show clearly the difference between the three 
modes of power supply operation. The exact solu- 
tion of eqn. 13 with eqn. 8b can be obtained as this is 
an ordinary differential equation of first order with 
separable variables. The solution has the following 
form: 

G(g) - G(9,) = -t (18) 

G(x) = 
1 

- . In(X) + 
4BioA 

X = a + bx + cx’, a = -& - 1, b = 2Bioa - 
&k2, c = 2Bioak2, d = 4c + (2BioA + &k’)‘. 

Solution 18 is not restricted by the condition 
k2$ <z 1 as is eqn. 15 but it is too complex; 
therefore, we shall use eqns. 17-17b wherever pos- 
sible. 

SOLUTION FOR THE EQUATION OF UNSTEADY HEAT 

TRANSFER 

This part aims at finding a solution of eqns. l-5 
for the case of the voltage-stabilized mode of 
operation. 

The solution of eqns. l-5 can be represented as the 
sum of the temperature-independent function S,(r) 
(steady-state) and the function Q,(r,t), the latter 
vanishing as time increases: 

W, t) = W) + Q&, t) (19) 

The solution for S,(r) is straightforward (see 
ref. 7). In Appendix I we present this solution in our 
notation and for 9c # 0. 

The solution for 9, is found in the following form 

PI: 

(20) 
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where a, are constants and 1, and g,(r) are the nth 
eigenvalue and eigenfunction of the differential 
operator L defined by the right-hand sides of 
eqns. 1-4 and the appropriate boundary conditions. 

The operator L is given by 

( Lrv + k2Y O<r<l 

w -= 
ar 

B + WL.g-, Y- =y+, r=l 

I KWL &Y l<r<rw 

Ly = 

i 

w (21) 
-= /I -CC_ y-=y+, r=rw 

ar pw at- ’ 

1 KPL LrY l<r<rw 

I -fipL-$=Biy r = rp 

i a 
where 4 E -. - 

r dr 
is the radial part of the 

Laplace operator in the iylindrical coordinates. 
The details of the solution for eigenvalues and 

eigenfunctions are given in Appendix II. The charac- 
teristic times of decay of the exponents 20 and, 
therefore, of the transition to the steady-state are 
given by 

Zi = l/n,” (22) 

where 71 > z2 > . . . > 7,. 
It is worth noting that if z1 Z+ z, and a, Z+ a, then 

the temporal behaviour of the process is determined 
by zl, which should be considered as the transient 
time in general. It will be shown below that this is 
indeed the case. 

CALCULATIONS OF TRANSIENT TIMES AND IM- 

PROVEMENT OF THE APPROXIMATE SOLUTION FOR 

AVERAGE TEMPERATURE 

In the following calculations we shall use the 
dimensionless parameters listed in Table I. These 
parameters correspond to physical parameters of 
the buffer, fused silica and polyimide [6]. 

The ratio of two first characteristic times zl/z2 as a 
function of the Biot number Bi is shown in Fig. 1 for 
rw = 2.125, rp = 2.28 and k* = 0.05. It can be seen 
that the first characteristic time z1 is considerably 
greater than the second. This allows us to leave in the 

TABLE I 

DIMENSIONLESS PARAMETERS USED FOR COM- 
PUTER SIMULATIONS 

Parameter Value Parameter 

KWLll 4.78 

KPL. 0.71 & 

B Wb 2.46 

’ Relative thermal diffusivity. 
b Relative thermal conductivity. 

Value 

0.262 

0.107 

expansion 20 only the first term and to describe 
approximately the evolution of the temperature of 
the buffer by the following equation: 

9(r, t) = S,(r) + a,J,(dmr) exp( - tn:) (23) 

where Jo(x) is the Bessel function of the zeroth order 
of the first kind and a1 and 2; are given by the 
procedure described in Appendix II. These results 
also permit the identification of the characteristic 
time of the heat transfer process with the time zl. 

By substituting eqn. 23 into eqn. 6d and inte- 

‘““7 

iisis o.io o.is o.go 0.k oio 0. 
Bi 

5 

Fig. 1. Ratio of two first characteristic times z1/r2 as a function of 
the Biot number; rw = 2.125, rp = 2.28, kZ = 0.05. Note that the 
Biot number represents the ratio between the thermal conduc- 
tivity of the wall (in this case the fused-silica capillary) and the 
product of the thermal conductivity of the liquid contained 
therein times its dimensionless thickness. The relevant equations 
for the Biot number are given in Part II (eqns. 4e and 7e). 
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grating the Bessel function [9], one obtains for the 
average temperature 5 

S = 9, + 2al . Jl <Jz-Te 
$5-2 

exp( - t/71) (244 

Jt W 9, = 2A . k - l/k2 

where J1(x) is the Bessel function of the first order of 
the first kind and the coefficient A is given by 
eqn. A1.5b. 

The use of eqns. 23 and 24 instead of the series 
given by eqn. 20 leads to an error at the very 
beginning of the transient process, at times of the 
order of z2 which are much less then the duration of 
the transient process as a whole. With the same 
degree of accuracy we can simplify eqn. 24a as 
follows: 

a = $[l - exp(-t/r,)] (25) 

Fig. 2 compares the exact characteristic time r1 
and approximate solution given by eqn. 17b for 
pw =pp = 0.1,k2 = 0.1 (rw = 1.353,rp = 1.404).It 
can be seen that the approximate and exact charac- 
teristic times agree qualitatively. Our calculations 
show that for smaller values of pw and pp the 
agreement is better, in accord with assumption 9. 

A comparison of the exact (eqn. 24b) and approx- 
imate (eqn. 17a) average stationary temperatures 

20/ 

I 
i.05 

I I I I 

0.10 0.15 0.20 
I 

0.25 0.30 0.35 
Bi 

Fig. 2. Comparison of an exact characteristic time r1 (solid line) 
and the approximate solution (symbols) given by eqn. 17b, pw = 
pP = 0.1, kZ = 0.1 (r, = 1.353, r, = 1.404). 

i.05 
I I I I I 

0.10 0.15 0.20 0.25 0.30 0.35 
Bi 

Fig. 3. Comparison of the exact average stationary (solid lines) 
(eqn. 24b) and approximate (symbols) (eqn. 17a) temperatures; 
p,+. = pP = 0.1, k* = 0.05 (curves 1); h = pP = 1, kZ = 0.05 
(curves 2). 

is given in Fig. 3 for pw = pp = 0.1, k2 = 0.05 
(curves 1) and forp, = pp = 1, k2 = 0.05 (curves 2). 
It is seen from Fig. 3 that the curves corresponding 
to the approximate and exact solutions are in good 
agreement for different Biot numbers. Therefore, it 
is possible to use a simple approximate expression 
for temperature evaluation (eqn. 17a). By substi- 
tuting eqn. 17a into eqn. 6e, one obtains for a 
stationary electric current in the voltage-stabilized 
mode 

2BioA(&k2 + 1) i, = -~ 
2BioA - k2 

This equation can be used for estimations of the 
overall Biot number of a given capillary and cooling 
system or, otherwise, to determine the properties of 
the buffer. 

DISCUSSION 

A solution of unsteady heat transfer in C%E has 
been given for the general case of capillary and 
cooling conditions and approximate equations and 
their solutions for average temperature have been 
derived for different modes of power supply opera- 
tion. The temporal behaviour of temperature in 
CZE can be described by an exponent for small Biot 
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numbers (poor cooling). A procedure has been given 
for finding the characteristic time of an unsteady 
process from a solution of an eigenvalue problem for 
conjugated heat transfer. The approximate equation 
for the characteristic time is valid for “thin-walled” 
capillaries. The approximate equations for station- 
ary temperature and current can be used instead of 
exact equations for small Biot numbers. 

The problem of heat evolution in electrophoretic 
techniques is not a trivial one. In the particular case 
of CZE, where this problem has been extensively 
studied both theoretically and experimentally, the 
following general conclusions can be drawn. 

According to the original equation proposed by 
Jorgenson [lo], the plate number N is directly 
proportional to the applied voltage gradient (E). In 
their experiments, Nincreased linearly with E with a 
tendency for plateauing at high E values. There is 
now a general consensus [4,11,12] that this is not the 
case: at high field strengths (varying according to 
several experimental parameters, such as molarity of 
background electrolyte and capillary radius, but in 
general above 200 V/cm) there exists a maximum in 
the experimental dependence of N vs. E, explained in 
terms of joule heat. 

According to Jones et al. [13], at increasing 
applied potentials, the slope of the peak variance 
versus time plot increases in magnitude. If only 
molecular diffusion were causing this time-depen- 
dent variance, there should be a negligible slope 
change over the experimental range of applied 
voltages, as the calculated temperature increase was 
less than 1°C. According to Jones et al., at high field 
strengths joule heating is approximately twice as 
significant than any other “non-ideal” flow contri- 
bution to solute band spreading. 

As will be indicated in the accompanying Part II, a 
way to minimize temperature gradients would be to 
resort to narrow-bore capillaries and/or lower the 
conductivity of the background electrolyte. How- 
ever, by decreasing the concentration of the opera- 
tive buffer one could obtain highly skewed peaks 
due to a mismatch of the respective conductivities of 
analyte and buffer. In addition, in very narrow bore 
capillaries (e.g., 25 pm diameter) zone detection 
could be problematic. 

Perhaps, as suggested by Jansson et al. [14], a 
good solution would be to adopt rectangular cross- 
section capillaries. When the aspect ratio is in- 

creased from 1 (cylindrical) to 25 (highly flattened) 
capillaries, owing to the strongly increased heat 
dissipation in the rectangular conduit, the tempera- 
ture increase is negligible even at E values well above 
1000 V/cm. Moreover, if detection is made through 
the long side of the rectangle, sensitivity is increased 
even at progressively decreasing channel heights. 
Jansson et al. also proposed the use of rectangular 
silicon capillaries, as silicon has a cu. 100 times 
higher heat conductivity than fused silica. 

According to a recent study [15], the overall 
column temperature could have a profound impact 
on protein separation and analysis. For example, on 
going from 20 to 45°C myoglobin showed a pro- 
gressive reduction from the Fe3 + form to the Fe2 + 
form. In the same temperature range, a-lactalbumin 
demonstrated a conformational transition that re- 
sulted in asymmetric peaks and sigmoidal mobility 
vs. temperature plots. Hence the importance of 
cooling the capillary, even below room temperature 
(at 24”C), as is customarily done in other electro- 
phoretic techniques [16], for protein analysis, cannot 
be over-emphasized. 

Another important aspect of operating at varying 
column temperatures is that the sample volume 
injected (e.g., by pressure loading) could also vary 
substantially. Rush et al. [15] calculated that in the 
column temperature range 15-5o”C, there will be a 
70% increase in the sample volume injected. 

SYMBOLS (PARTS I AND II) 

a 

B PL 

P WL 

Bi 

CL 

Temperature coefficient of electric conduc- 
tivity 
Relative thermal conductivity of polyimide 
coating 
Relative thermal conductivity of fused-silica 
wall 
Biot number 

CP 

cw 

Specific heat capacity of liquid (buffer inside 
the capillary) 
Specific heat capacity of the capillary poly- 
imide coating 
Specific heat capacity of the capillary fused- 
silica wall 

E Electric field strength 
a Average dimensionless temperature 
F Volumetric power generation 
h Coefficient of external heat transfer 
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Ir 
Jo 

Dimensionless electric current 
Electric current 

9, = finite at r = 0 

Bessel function of the zeroth order of the first 
kind 

9- =g+ EL/j .ELatr= 1 s ’ ’ ar wL ar (A1.3b) 

k2 
k PL 

k WL 

NU 
Pr 

40 
4 
PL 

PP 

PW 

Ra 
Re 
RL 

RP 

Rw 

r 

Autothermal parameter 
Relative thermal diffusivity of polyimide 
coating 
Relative thermal diffusivity of fused-silica 
wall 
Nusselt number 
Prandtl number 

9- = $+ ass- _ B ax 
s ” ar PW . x at r = rw (A1.3~) 

We seek the solution in the form 

Initial dissipated power per unit volume 
Joule heat generation 
Density of the buffer inside the capillary 
Density of the capillary polyimide coating 
Density of the capillary fused-silica wall 
Rayleigh number 
Reynolds number 
Radius of the capillary lumen 
Radius of the capillary polyimide coating 
Radius of the capillary fused-silica wall 
Dimensionless radius (in units of inner capil- 
lary diameter) 
Buffer electric conductivity 
Dimensionless time 
Temperature of coolant 
Time of a transient process 
Bessel function of the zeroth order of the 
second kind 

9, = AJo - -$ O<r<l 

9, = Bin(r) + C ldr<rw 

9, = Din(r) + E rw < r < rp 

where Jo(x) is the Bessel function of the zeroth order 
of the first kind. The five constants A, B, C, D and E 
should be determined from the boundary conditions 
(eqns. A1.3bd). Substitution of eqn. Al.4 into 
eqns. A1.3b-d gives 
for the constants: 

f.7 
t 

T, 
z 

yo 

AJ,(k) - f = C 

-AkJl(k) = &B 

Bln(rw) + C = Dln(rw) + E 

B = BPWD 

-BpL.g = Bi[Dln(rp) + E - &-I 
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where JI(x) is the Bessel function of the first-order of 
the first kind. 

Solving this set of equations, one obtains 

A = BioA(l + k2W 
&ddk> - kJl(k) 

APPENDIX I where 

Steady-state radial temperature distribution 
By substituting 9,(r) in eqns. 8-14a, one obtains 

BioA = BWL ln(rW) + 

+1+k29,=0 O,<r< 1 (Al.1) 

I a as, -.- 
r ar ( > rs- = 0 1 < r < rp (A1.2) 

(A1.3a) 

= Bi(9, - SC) at r = rp (A1.3d) 

(A1.4) 

the following set of equations 

(Al .5a) 

(Al.Sb) 

--!- 
B 1 

ln(rp/rw) + j$j 11 -l (A1.6) 
PW P 

is the dimensionless coefficient of proportionality of 
the heat flux from the inner surface of the lumen to 
the temperature difference between the inner surface 
and the coolant. 
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APPENDIX II 

Calculation of eigenvalues, eigenfunctions and coeffi- 
cients for the unsteady solution. 

We seek an eigenfunction of the operator L in the 
following form: 

I AJ&JzTP) Odr<l 

ga(r) = BJg(lzr/&) + cYo(h/&) 1 < r < rw 

1 DJO(ar/Ja+EYo(arIJa 1 <r<rw 
(A2.1) 

where YO(x) is the Bessel function of the zeroth order 
of the second kind. 

Substitution of eqn. A2.1 into the boundary 
conditions included in the definition of the operator 
L leads to the set of equations for the determination 
of unknown constants A, B, C, D and E: 

AJ,,(,/m) - BJ&/&) - 

A,/mJ,(,/m) - 

B&G (&,&L)/& - 

CJw,nY1(~IJ;(wL>IJxwL = 0 

BJ&rw/&) + CY&rwi&) - 

DJ&~,/,/&) - EYD(k4,&) = 0 642.2) 

1 [BJI(ArW/&) + CY~(b/&& - 
6 

2 
- [DJ1(Izrw/&) + EYIWd,/% = 0 

@,,[DJ,(~r,/,.b& + EY~(~r~/&&~ - 

Bi[DJ&rp/,/k& + EYdblJlc,,)l = 0 

The linear uniform system of eqns. A2.2 has a 
non-trivial solution when the determinant of the 
system is equal to zero. This condition gives an 
equation for eigenvalues the solution of which is 
obtained numerically. The Bessel functions are 
computed by using programs from ref. 17. For 
calculating the eigenfunctions corresponding to the 
found eigenvalues, the coefficient A is set equal to 1 
and the remaining coefficients are determined from 
the set of equations obtained from eqns. A2.2 by 
setting A = 1 and omitting the last equation. 

In order to find the coefficients a, we substitute 

eqns. 19 and 20 into the initial condition 5, thus 
obtaining 

(A2.3) 

where N is the number of eigenfunction used in the 
expansion. Multiplying eqn. A2.3 by rg,(r) (m = 1, 
. ..) N) and integrating with respect to r, one obtains 
a set of N linear algebraic equations for N unknowns 
a,: 

.:I a&7gW) = L m = l,...,N (A2.4) 

(g,,g,,,) = i g,,g,,,rdr, 9, = - i &g,,,rdr 
0 0 

The set of eqns. A2.4 was solved by Gauss-Jordan 
elimination with pivoting [ 171. 
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